AskDefine | Define seismology

Dictionary Definition

seismology n : the branch of geology that studies earthquakes

User Contributed Dictionary



From (seismos) "earthquake" and (logia) "study of"


  1. The study of the vibration of the Earth's interior caused by natural and unnatural sources


Extensive Definition

Seismology (from the Greek seismos(σεισμός) = earthquake and λόγος,logos = knowledge ) is the scientific study of earthquakes and the propagation of elastic waves through the Earth. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram.

Seismic Waves

Earthquakes, and other sources, produce different types of seismic waves which travel through rock, and provide an effective way to image both sources and structures deep within the Earth. There are three basic types of seismic waves in solids: P-waves, S-waves (both body waves) and surface waves. The two basic kinds of surface waves (Rayleigh and Love), can be fundamentally explained in terms of interacting P- and/or S-waves.
Pressure waves (P-waves), are longitudinal waves that travel at maximum velocity within solids and are therefore the first waves to appear on a seismogram.
S-waves, also called Shear waves or secondary waves, are transverse waves that travel more slowly than P-waves and thus appear later than P-waves on a seismogram. Particle motion is perpendicular to the direction of wave propagation. Shear waves do not exist in fluids such as air or water.
Surface waves travel more slowly than P-waves and S-waves, but because they are guided by the surface of the Earth (and their energy is thus trapped near the Earth's surface) they can be much larger in amplitude than body waves, and can be the largest signals seen in earthquake seismograms. They are particularly strongly excited when the seismic source is close to the surface of the Earth, such as the case of a shallow earthquake.
For large enough earthquakes, one can observe the normal modes of the Earth. These modes are excited as discrete frequencies and can be observed for days after the generating event. The first observations were made in the 1960s as the advent of higher fidelity instruments coincided with two of the largest earthquakes of the 20th century - the 1960 Great Chilean earthquake and the 1964 Great Alaskan earthquake. Since then, the normal modes of the Earth have given us some of the strongest constraints on the deep structure of the Earth.
One of the earliest important discoveries (suggested by Richard Dixon Oldham in 1906 and definitively shown by Harold Jeffreys in 1926) was that the outer core of the Earth is liquid. Pressure waves (P-waves) pass through the core. Transverse or shear waves (S-waves) that shake side-to-side require rigid material so they do not pass through the outer core. Thus, the liquid core causes a "shadow" on the side of the planet opposite of the earthquake where no direct S-waves are observed. The reduction in P-wave velocity of the outer core also causes a substantial delay for P waves penetrating the core from the (seismically faster velocity) mantle.
Seismic waves produced by explosions or vibrating controlled sources are the primary method of underground exploration. Controlled source seismology has been used to map salt domes, faults, anticlines and other geologic traps in petroleum-bearing rocks, geological faults, rock types, and long-buried giant meteor craters. For example, the Chicxulub impactor, which is believed to have killed the dinosaurs, was localized to Central America by analyzing ejecta in the cretaceous boundary, and then physically proven to exist using seismic maps from oil exploration.
Using seismic tomography with earthquake waves, the interior of the Earth has been completely mapped to a resolution of several hundred kilometers. This process has enabled scientists to identify convection cells, mantle plumes and other large-scale features of the inner Earth.
Seismographs are instruments that sense and record the motion of the Earth. Networks of seismographs today continuously monitor the seismic environment of the planet, allowing for the monitoring and analysis of global earthquakes and tsunami warnings, as well as recording a variety of seismic signals arising from non-earthquake sources ranging from explosions (nuclear and chemical), to pressure variations on the ocean floor induced by ocean waves (the global microseism), to cryospheric events associated with large icebergs and glaciers. Above-ocean meteor strikes as large as ten kilotons of TNT, (equivalent to about 4.2 × 1013 J of effective explosive force) have been recorded by seismographs. A major motivation for the global instrumentation of the Earth with seismographs has been for the monitoring of nuclear testing.
One of the first attempts at the scientific study of earthquakes followed the 1755 Lisbon earthquake. Other especially notable earthquakes that spurred major developments in the science of seismology include the 1906 San Francisco earthquake, the 1964 Alaska earthquake and the 2004 Sumatra-Andaman earthquake. An extensive list of famous earthquakes can be found on the earthquake page.

Earthquake prediction

Most seismologists do not believe that a system to provide timely warnings for individual earthquakes has yet been developed, and many believe that such a system would be unlikely to give significant warning of impending seismic events. More general forecasts, however, are routinely used to establish seismic hazard. Such forecasts estimate the probability of an earthquake of a particular size affecting a particular location within a particular time span.
Various attempts have been made by seismologists and others to create effective systems for precise earthquake predictions, including the VAN method. Such methods have yet to be generally accepted in the seismology community.

Notable seismologists

See also


seismology in Bosnian: Seizmologija
seismology in Breton: Seismologiezh
seismology in Bulgarian: Сеизмология
seismology in Catalan: Sismologia
seismology in Czech: Seismologie
seismology in Welsh: Seismoleg
seismology in Danish: Seismologi
seismology in German: Seismologie
seismology in Estonian: Seismoloogia
seismology in Modern Greek (1453-): Σεισμολογία
seismology in Spanish: Sismología
seismology in Esperanto: Sismologio
seismology in Persian: زلزله‌شناسی
seismology in French: Sismologie
seismology in Galician: Sismoloxía
seismology in Armenian: Սեյսմալոգիա
seismology in Croatian: Seizmologija
seismology in Indonesian: Seismologi
seismology in Icelandic: Jarðskjálftafræði
seismology in Italian: Sismologia
seismology in Hebrew: סייסמולוגיה
seismology in Latvian: Seismoloģija
seismology in Lithuanian: Seismologija
seismology in Malay (macrolanguage): Seismologi
seismology in Dutch: Seismologie
seismology in Japanese: 地震学
seismology in Norwegian: Seismologi
seismology in Polish: Sejsmologia
seismology in Portuguese: Sismologia
seismology in Romanian: Seismologie
seismology in Russian: Сейсмология
seismology in Slovak: Seizmológia
seismology in Slovenian: Seizmologija
seismology in Serbian: Сеизмологија
seismology in Serbo-Croatian: Seizmologija
seismology in Finnish: Seismologia
seismology in Swedish: Seismologi
seismology in Tagalog: Seismology
seismology in Thai: วิทยาแผ่นดินไหว
seismology in Vietnamese: Địa chấn học
seismology in Turkish: Sismoloji
seismology in Ukrainian: Сейсмологія
seismology in Chinese: 地震学
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1